
A New High-Performance Approach for Offline
Replacement Attack Prevention in Trusted Clients

Hossein Rezaei Ghaleh
Department ofComputer Engineering and Information

Technology
Amirkabir University

Tehran, Iran

Abstract- Trusted Computing has been a major research issue in
recent years. Software integrity is a main part in a trusted
computing environment. As a chain of invocations are involved in
a computing system, it is imperative to build a trust relationship
between various layers in the system. TLC is a novel approach
proposed to build a trusted Linux system. However, it suffers
from offline replacement problem. In this paper we propose a
high-performance approach based on blacklist checking to
countermeasure this problem. We have developed and presented
an accelerated mechanism to maintain system performance
during integrity checking phases. Tow main ideas are used for
this purpose are synchronous cache consistency and blacklist
partitioning with embedded blacklist identity. In addition, an
analysis framework is developed for performance of the proposed
approach that incorporates all important system and workload
parameters.

Keywords-trusted computing; operating system; replacement
attack; cache consistency

I. INTRODUCTION

Trusted Computing considers many fields that one of this is
software integrity. As these days the computer systems use
layered and modular architecture, it is imperative to establish a
trusted chain between the layers. For example, when we are not
sure of the operating system's security, we can not trust the
security of the application being executed by the system. The
integrity of software means that we make sure of the integrity
of the original code and all software modules involved in its
execution. Consequently, when the module is loaded we would
be certain that there exist no malicious code in it, or its data
have not been tempered by unauthorized entities.

One leading approach to help in software integrity is
developing the TLC project. But the TLC is vulnerable to
replacement attack. We have proposed an improvement for
TLC that defends it against this attack. Also we have used
cache mechanism for better performance and we have proposed
a new policy to improving it.

In reminder of paper, we have reviewed related works that
have been attempted to support trusted client platform. In next
section we have introduced Trusted Platform Module (TPM)
that has been designed by TCG. After that we consider TLC
closely and we have introduced its modules. Then we have

978-1-4244-5113-5/09/$25.00 ©2009 IEEE

741

Siavash Khorsandi
Department ofComputer Engineering and Information

Technology
Amirkabir University

Tehran, Iran
khorsand@aut.ac.ir

explained replacement attack that is feasible on TLC system. In
next section we have proposed our method that uses the
blacklist for solving the problem. In continue we have
considered performance problems and we have proposed a new
policy for caching mechanism for improving it. In last section
we have analyzed system performance.

II. TRUSTED CLIENT PLATFORM

A. Related Works

Many projects have been down on software integrity,
secure booting, application isolating and other technique for
securing system with different approaches such as home and
network applications. In this section most of the efforts made in
this area are examined.

First method is AEGIS [8, 9]. It makes some modification
on the standard startup of the computer and by adding a chip to
the motherboard, uses this device as a root of trust. In this
method, the digital signature has been used and each layer
before launching of the next layer verifies its digital signature.
By doing this, upon loading of each layer, a chain of trust is
formed. In case of any error during this process, the system
automatically connects to a special server and recovers the lost
module. The chip used in this method contains codes for
cryptography, required network protocols for recovery of the
lost module and the digital signature of the one or a number of
lower layers of the system [13]. sAEGIS is another method [7]
that has added some new capabilities to AEGIS and some
improvements have been made. One of they is using of smart
card for access to the system. This card contains the digital
signature of higher layers such as operating system and
applications and is protected by a PIN code.

BitLocker [1, 2 and 5] is a method that is a part of
Windows Vista provided by Microsoft and uses TPM. This
software in order to provide the highest level of security
requires the TPM hardware to be installed on the motherboard
and support special BIOS. The unique advantage of this
software is simplicity that it provides appropriate protection for
the user's data through encryption before storing the data on
the hard disk and during the execution. It also provides separate
partitions for the operating system and its modules and keeps
them encrypted.

NGSCB [18] and Terra [15] are different methods that
attempt to make the system secured by same idea. Both
NGSCB and Terra explore a virtual machine monitor (VMM)
to partition a tamper-resistant hardware platform into multiple
isolated virtual machines. This mechanism is useful in new
approaches [6, 10]. In NGSCB, a system is partitioned into two
parts: trusted and untrusted, and only the trusted part is attested.
Therefore, to ensure service trustworthiness , the service
provider platform has to treat the service and all its code as
trusted, which may not be true all the time. Terra partitions the
system into virtual machines, each of which may be dedicated
to a single application (e.g., a service). As such, the
trustworthiness of a service can be evaluated by attesting its
virtual machine. This attestation, however, is done at memory
block level, which incurs high CPU and memory overhead.
Terra achieves higher assurance ofattestation because of strong
process isolation provided by VMM, but lacks the capability of
ensuring simple and efficient trusted execution across
transactions.

Trusted Linux Client (TLC) is another method [12, 17]. The
goal of this project is to protect desktop and mobile Linux
clients from on-line and off-line integrity attacks, while
remaining transparent to the end user. This is accomplished
with a combination of a TPM security chip, verification of
extensible trust characteristics, including digital signatures, for
all files, authenticated extended attributes for trusted storage of
the resultant file security metadata, and a simple integrity
oriented Mandatory Access Control enforcement module. The
resultant system defends against a wide range of attacks, with
low performance overhead, and with high transparency to the
end user. In continue we focus on TLC and TPM with more
details.

B. Trusted Platform Module

The Trusted Computing Group has defined an open
specification for TPM [19], which has been implemented by
multiple chip vendors, and incorporated into desktop and
mobile systems from the major manufacturers .

While the full TPM specification is quite long and difficult
to understand, the chip's basic functionality is simple. From a
programmer's perspective, a TPM looks like the following
logical diagram.

Functional Units Non-volatile memor y Volatile memory

I RNG I I Endorsement Key I RSA Key Slot 0

I I I I
...

Hash Storage Root Key RSA Key Slot 9

I HMAC I I Owner Secret I PCRO

IRSAKeyGen I
...

PCRiS

I RSA Ene/Dec I I Key Handles I
I Auth Session Hnd I

Figure I. TPM logical diagram

742

The chip has a hardware random number generator (RNG)
and RSA engine for on-chip key pair generation. When a key
pair is generated, the private part is encrypted by the Storage
Root Key (SRK) or a descendant, and the resultant pair
exported out of the chip for storage. The chip has 10 volatile
slots into which the key pairs can be loaded, decrypted, and
then used for signature, encryption, or decryption. (Signature
verification is not done on-chip, as it is not a sensitive
operation.)

The TPM chip also has 16 Platform Configuration
Registers (PCR), which are used to securely store 160 bit
hashes. These hash registers are used to store hashes of the
software boot chain (BIOS, master boot record, grub bootstrap
loader, Linux kernel, and initial ramdisk image). Then the
usage of keys for encrypting or decrypting can be tied to
specific values of these PCR registers, so that if any part of the
measured software is altered, the decryption is blocked. In
TPM terminology, encryption tied to a specific PCR value is
called "sealing", and the corresponding decryption called
"unsealing". Malicious alterations to the master boot record,
grub, kernel, or initrd cannot escape detection through the PCR
values, as the measurements are always done on the next boot
stage, before execution is transferred to it. Since the TPM
hashes all presented data into a given PCR, it is
computationally infeasible for malicious code to calculate and
submit a measurement which would result in a target "correct"
value after this hashing.

C. Trusted Linux Client

Many projects have been done for trusted computing in
Linux environment such as Trusted Grub, IMA [11] and TLC
[17]. In this paper we focus on TLC that has introduced a new
method that combine code-signing with TPM. In this method
tow major module has been developed; Extended Verification
Module (EVM) and Simple Linux Integrity Module (SLIM).

For security reasons, it is desirable to check security
characteristics, including the authenticity, integrity, revision
level, and robustness of an application before its execution, to
determine whether or not to run the executable, or under what
level of privilege to run it. EVM presents a single
comprehensive mechanism, Extended Verification, to cover
security goals such as Message Authentication Codes, signed
executables, anti-virus, and patch management systems, but
implemented in a single, optimally fast mechanism, with a
flexible policy based management system. This module
proposed that executables be digitally signed, and that the
kernel check the signature every time an executable is to be
run, refusing to run it if the signature is not valid. Viruses or
other malicious codes, lacking a valid signature would be
unable to run. The digital signatures on the executables can be
of two types: symmetric or asymmetric. A symmetric signature
uses a secret key to key a Message Authentication Code
(HMAC), taken across the entire content of the executable file.
Symmetric signatures can be verified with relatively little
overhead, but the key must remain secret, or the attacker can
forge valid signatures. This makes symmetric signatures useful
mainly in the local case. In addition, the key must be kept
secret on the local machine, and this is very difficult to do.
EVM provides a single, symmetric key based verification

Figure 2. Keys relationships in EVM

If the PIN has verified and PCRs are correct then SRK
become unsealed. After this process we can use SRK for
decrypting kernel key. By kernel key, EVM can verify every
file's digital signature. At boot time the kernel key is loaded to
Linux kernel. After that in every open file process, EVM verify
HMAC of file by kernel key.

B. Proposed blacklist approach

The blacklist is a list that has the name or identifier of
entities that are revoked or malicious. This list is very useful in
secure systems such as PKI-enabled systems. In these systems,
Certificate Authority (CA) that issues certificates, publishes
Certificate Revoked List (CRL) that lists revoked and

III. REPLACEMENT ATTACK PREVENTION

In this part we explain some solutions for solving the
replacement attack. At first, we review existing method for
countermeasure the attack and we show they are not feasible.
Then we explain our solution in detail. Our method is practical
in many systems, but we design it with focus on the TLC.

A. Issues and Requirements

There are some solutions for solving replacement attack.
First method is access control. We can use a strong physical
access control mechanism to prevent the attacker from copy his
files to our system. In this situation, the only way to access the
system is network access that is through our secure operating
system. So our system check the version of files before install it
and can prevent form replace new version by old version.

But this method is not feasible in many situations. In
normal conditions, many people have access to system and can
boot it with another operating system such as Live-OS. Then
the attacker can copy old version bugged program and use it
when original operating system running.

Another solution for solving replacement attack problem is
maintaining a versions list. In this method the operating system
maintains a list that has an entry for each file that is updated.
So, when operating system loads the file, check this list that the
file is last version or not. The hash of versions list can be stored
in the TPM for preventing unauthorized changes in the list.

This method is not suitable because the versions list grows
up quickly and the opening and loading the file consumes long
time.

Another solution is generating new kernel key and revoke
old key and signatures. In this method, the TPM replace old
key with new key and operating system signs all files with new
key. It is clear that not feasible because has mush performance
penalty.

has some security bug and has a drawback for hackers. Then
the developer of this program find this bug and fixes it. So, we
get new version of the program, sign it and overwrite on old
version. But the attacker can replace old version and new
version with offline attack and our system can not detect it.

In TLC when a bugged program has been replaced with
new version, EVM sign new file, but the attacker can replace
old bugged file with new version and EVM can not detect it,
because old file has valid signature. There is a simple solution
for this problem and it is resigning all files by new kernel key,
but it has much performance penalty and is not practical. In
next part we explain a solution for this problem by using of
blacklist.

8 Sl0mgCUser

T PM

$
~ ft - GCCIYP~ - f1
~ SRK Kernel Key

peRs Values

The EVM module verifies that all files are authentic,
unmodified, current, and not known to be malicious. EVM
does not (and cannot) determine if files are correct - that is that
given any (possibly malicious) input data that they will operate
properly. A data driven compromise of the operation ofverified
files can still lead to the compromise ofa system, despite EVM
checking. An integrity enforcing model is needed to block, or
at least contain any such compromise. The Simple Linux
Integrity Module (SLIM) classifies programs as trusted or
untrusted based on the verifications done by the EVM, and then
enforces the access policy.

Figure 2 has been shown keys relationships in TLC. In this
method when system has turned on, the PIN of TPM was
requested from user. After that TPM measures boot sequence
software and store their hashes in PCRs.

D. Replacement Attack to TLC

In the TLC when we install new program on operating
system, we sign all files of that program. In this situation the
files that we have not installed have not valid digital signature
and could not be run. This mechanism defenses system against
malicious programs such as viruses, but the system is not
secure against vulnerable program such as bugged software.
For example, a trusted program such as a driver or application

function, with TPM protection of the key. Also EVM uses a
policy based verification function based on storage of
verification data in authenticated extended attributes.

In normal operation, when a new executable is installed, it
is first checked by all of the verification methods listed in the
EVM policy file, and the results inserted into the extended
attribute list, along with a hash of the file, and HMAC of the
attributes. At run time, the kernel then looks at the verification
attributes and rapidly compares them to the current policy, and
determines how to run it according to policy. Checking the
header does require hashing the executable file, to verify that it
hasn't been modified, but this hash and subsequent symmetric
key HMAC is very fast compared to the original checking
methods, and is cached until the next reboot. Thus the
verification is done in optimal time, allowing checking on all
accesses.

743

invalidate certificates. By using this mechanism, system can
detects entities that are valid previously, but are not valid now.

In our solution, we have used the blacklist for defense
system against replacement attacks. We have changed the
algorithm of loading and opening files in the TLC. We have
added a new step to it that check blacklist for the file identifier.
Figure 3 has shown this algorithm.

BEGIN
IF HASH(file.data)<>file.attrib.hash

ERROR
ELSE IF HMAC(kernelkey, file.attrib)

<>file.attrib.hmac
ERROR

ELSE IF file.attrib.id IS IN
FILE (file.attrib.blacklist)
ERROR

ELSE
VERIFIED

END

Figure 3. Enhanced file opening and verification algorithm

In this method according to TLC, the file has some
additional security attributes and we have added some new
attributes to it. When a file is requested for opening, first the
hash of its content is calculated. Then this value is compared
with correct hash value that is stored in file's security
attributes. If these tow values are equal then HMAC of file's
security attributes except "hmac" attribute, is calculated by
kernel key and is compared with hmac value stored in file's
security attributes. If these tow values are equal then the
blacklist file address and file's identifier that is a numeric
value, are extracted from file's security attributes. Then the
blacklist file has been searched for this file's identifier. If this
identifier is not in the blacklist then it has security conditions
for executing. If at least one of the conditions on above
algorithm is not passed then the file can not be executed or
loaded.

In TLC the last step is not exist and therefore it is malicious
against replacement attack, because old signed bugged
executable file can be verified. But in our solution old file is
registered in the blacklist and can not pass last step.

A problem exists yet, because the attacker can modify the
blacklist file and can delete the entry of his bugged file. We
have used the TPM for solving this problem. We have added
blacklist files hashes to TPM's PCRs and we have sealed
kernel key with this value and then if any file of the blacklists
has changed, then the kernel key can not be extracted.

Another problem is performance penalty in our solution for
big blacklist file. In the bingeing, this file is very small and
therefore loading and searching in it is quick. But when bugged
and invalid files have been increased, the blacklist file become
larger and larger. For solving this problem we have used a
mechanism similar to Distribution Point in CRLs. In this
mechanism, the address of blacklist has been stored in the file.
Therefore we have more than one blacklist and each data or
executable file has a reference to it's correspond blacklist. By

744

breaking the one blacklist file to more files, searching will be
quicker.

Also we need an identification item to detect each file
uniquely entire the system. We have defined an ID for each file
that is sequential and incremental. This ill is unique in the
system and assigned when we sign the file. Also we save last
assigned ill in the TPM securely.

According to above discussion, we have added some new
security attributes to file header. These attributes have been
added to security.evm and have been shown in figure 4.

security.evm.id
security.evm.blacklist

Figure 4. Added security attributes to security.evm

For example security.evm.id can be '0807191727552' and
security.evm.blacklist can be '/etc/blacklist/l.blk'. Also we
have added some new lines to grub.conjfile that force GRUB
to calculates hash (measure) of blacklist files and extends a
PCR that seal kernel key. Figure 5 shows an example.

Measure (hdO,l)/etc/blacklist/l.blk 9
Measure (hdO,1)/etc/blacklist/2.blk 9
Measure (hdO,1)/etc/blacklist/3.blk 9

Figure 5. Example of adding measure ofblacklist to grub.conffile

C. Consistent Cache Acceleration

There is one major problem when we add some security
and verification mechanism to opening and loading files. This
problem is performance, because we calculate hash of file's
content and verify digital signature and check the blacklist and
therefore we have tow or more access to the disk instead ofone
access for read a file.

There is same problem in TLC [17] and other methods [21]
and they use some solutions such as caching of verification
results. In this method, some changes are accomplished on OS
kernel. For example when a file has being opened, hash of
content has being checked and digital signature has being
verified. Then the result that can be true or false has being
cached and until this file has not opened with write access,
cached result is valid. For implementation of this mechanism
some of system calls such as open or execute must be changed.
In our method that uses the blacklist, caching is suitable and we
have used it.

For improving performance and more efficiency, we
propose that verification cache (VC) and normal operating
system file cache (FC) be consistent. It means that every
cached file in FC has corresponded entry in VC. We can
guarantee it by a policy that is discussed in continues. We force
that if a file is in FC, the corresponded entry in VC maintained
and is not overwrote. Also if a file that is in FC is opened with
write access, after finish this operation, the OS confirms its
modification by user, calculates its hash and HMAC and saves
they in its security attributes. Therefore if a file is in FC, its
corresponded entry exists in VC certainly.

IV. PERFORMANCE ANALYSIS

In this section we analysis the performance of a system that
has our verification mechanism on opening and execution. We
analysis it with mathematic formulas that shows efficiency is
not depend to present file systems and file caching
mechanisms. We have considered efficiency in read and write
operations.

In this analysis, we have assumed that all required lists in
caches or files are sorted and we can search in it by Binary
Search algorithm with logarithmic order. Also this system has
tow caches includes File Cache (FC) and Verification Cache
(VC) with hyc and hFC hit rates. The file system can caches
most recently used files by FC and can improves disk
performance. VC is another cache that stores security
verification results. If a file has been loaded and verified
successfully then it's Id and verification result has added to
VC. Therefore in the next read operation, verification
mechanism has not down and VC has been referenced. We
show the number of entry in VC and FC by nyC and nFC.
Another assumption is that we have a blacklist that has nBL
entries.

We consider read efficiency by calculating Tread to
Tverifiedread- Tread is the time ofread operation in usual present file
system and Tverifiedread is the time in our system that has
verification mechanism. Figure 6 shows the equations in read
efficiency.

E - T,ead
read - T

verifiedread

Tread =hpC (TPCread) + (1- hpc)(Tjilediskread + TPCwrite)

Tverifiedread =hpc (TPCread) +

(1- hpc)(Tjilediskread + TPCwrite + T verify)

T verify =hvc (TVCread) + (1- hvc)(Tmeasure + TVCwrite)

Tmeasure =Tjilecontenthash + TjileattribsHMAC + TBLsearch

Figure 6. Calculating of read operation efficiency (l)

In this analysis, we assumed some primitive time equations
that are normal orders in traditional operating systems and
hardware. Also, we chose a usual PC and calculated its
performance parameters by a performance test tool and
checked its test results with our theory equations that have been
shown in figure 7. In these equations we assumed all lists are
maintained sorted and HAMC has two hash operations
according to [19]. Also in these lists Tx shows the time of
operation 'x' in second, Sxshows the size of 'x' in byte and Vx
shows the velocity ofoperation 'x' in byte per second.

We have done some performance tests for evaluating actual
records for our PC [2, 3]. We employed PassMark™
Performance Test which is software with many tools for
performance tests like CPU, memory, and disk test suits. The
general system properties of our used test system are: Intel
Pentium IV CPU with 3 GHz, 2048 KB cache size, 400 MB
available RAM, and FAT32 file system. We have tested three

745

main performance parts include CPU, memory and disk. In the
CPU test we have done different 8 tests like floating point
math, finding prime number, and image rotation. The memory
test includes some parameters like allocating small block,
reading cached and uncached data, and writing in memory.
Last test suite is disk test that is very important because usually
it is bottleneck for total performance. This test includes both
sequential reading and writing, and random searching for
reading and writing operations. Results of these tests showed
that our system has following orders that have been shown in
figure 8. In these equations the size of file cache (FC)
calculated from Windows XP and 2003 server. Also we
assumed that usual files are about 1 KB to 1 GB and its header
has an order of 1000 bytes.

TPCread = log;FC x t memread

TPCwrite = log;FC x tmemread + tmemwrite

T S file
filediskread - V

diskread

T S file
filediskwrite - V

diskwrite

TBLsearch = log;BL X t memread

TVCread =log ;vc x t memread

TVCwrite = log;VC X t memread + t memwrite

T S file
filecontenthash =V

SHAI

= 2 X Sfileheader
TfileattribsHMAC V

SHAI

Figure 7. Primitive time equations

t memread = t memwrite "'" 0[10-
7

]

Vdiskread =VdiSkwrite "'" 0[10
7

]

VSHA1 "'" 0[10 7
]

npc "'" 0[10 3
]

nVC "'" 0[10 4
]

nBL "'" 0[10 4
]

S fileheader "'" 0[10
3

]

Sfile "'" 0[1 OX] ~ 3 ~ X ~ 9

Figure 8. Calculated and assumed primitive orders

Therefore we can calculate the order of read operation
efficiency. It has been shown in figure 9. We can see that it
depends to hyc (hit rate on verification cache) only and ifhyc is
90% then Ereadis about 91% and it is acceptable.

Tread ~ (1- hFC)0[1 OX-7]

Tverifiedread ~ (1- hFC)(2 - hvc)0[1 OX-7]

1
~ E read =----

2-hvc

Figure 9. Calculating of read operation efficiency (2)

Calculating of write operation efficiency is similar to read
operation and has been shown in figure 10. In verified write
operation, we calculate the hash and HM:AC of the file and
then update YC. We can see that efficiency of write operation
is about 1 and our verification mechanism doesn't affect it.

E . = Twrite
write T

verifiedwrite

Twrite = TFCwrite + Tjilediskwrite ~ Twrite "J 0[1 Qx-7]

J:,erifiedwrite = TFCwrite + TjilediSkwrite + Tmeasure

~ J:,erifiedwrite ~ O[lOX-7]

~ Ewrite = 1

Figure 10. Calculating ofwrite operation efficiency

Y. CONCLUSION

In this paper we reviewed trusted client platform and
focused on the systems that use TPM such as TLC. In continue
we proposed an improvement to its verification mechanism.
This improvement was blacklist checking in file opening and
loading operations. Also we considered performance penalty
and we proposed a cache consistency policy to improve hit
rate. Our analysis showed that the difference between
performance of normal system and secure system in our
method is very little and depends to Verification Cache hit rate
only that is approximately 90 percent.

ACKNOWLEDGMENT

I would like to thank Dr. Khorsandi for his advice and for
his suggestions to improve the language of paper. Also I thank
Dr. Doostari at Shahed University for his contributions.

REFERENCES

[1] H. Rezaei Ghaleh, M.A. Doustari, A new approach for secure and
portable OS, The Second International Conference on Emerging
Security Information (Securware 2008), Systems and Technologies,
IEEE Computer Society, August 2008.

746

[2] H. Rezaei Ghaleh, S. Norouzi, A new approach to protect the OSfrom
off-line attacks using the smart card, The Third International Conference
on Emerging Security Information, Systems and Technologies
(Securware 2009), IEEE Computer Society, June 2009.

[3] H. Rezaei Ghaleh, M.A. Doustari, Improving the Client Security using
the Smart Card and Trusted Server, International Conference on
Security and Management (SAM 2009), WROLDCOMP'09, July 2009.

[4] Peng Shaunghe, Han Zhen, Enhancing PC Security with a V-Key, IEEE
Security and Privacy, Volume 4, Issue 5, September 2006.

[5] BitLocker Drive Encryption Technical Overview, Microsoft TechNet,
2008.

[6] Peter M. Chen, Brian D. Noble, When Virtual Is Better Than Real,
Proceedings of the Eighth Workshop on Hot Topics in Operating
Systems, IEEE Computer Society , 2001.

[7] Naomaru Hoi, William A. Arbaugh, Samuela 1. Pollack, Daniel M.
Reeves, Personal Secure Booting, Proceedings of the 6th Australasian
Conference on Information Security and Privacy, Springer-Verlag, 2001.

[8] William Albert Arbaugh, Chaining layered integrity checks, University
ofPennsylvania, Philadelphia, PA, USA, 1999.

[9] Arbaugh, Farber, Smith, A secure and reliable bootstrap architecture,
IEEE Symposium on Security and Privacy, 1997.

[10] Hermann Hartig, Security architectures revisited, Proceedings of the
10th workshop on ACM SIGOPS European workshop, 2002.

[11] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, Leendert van Doom, Design
and Implementation of a TCG-based Integrity Measurement
Architecture, 13th Usenix Security Symposium, San Diego, California,
August, 2004.

[12] Hiroshi Maruyama and others, Trusted Platform on demand (TPod),
IBM, February 1, 2004.

[13] William A. Arbaugh, Angelos D. Keromytis, David 1. Farber, and
Jonathan M. Smith, Automated Recovery in a Secure Bootstrap Process,
Network and Distributed System Security Symposium, Internet Society,
March 1998.

[14] James Hendricks, Leendert van Doom, Secure bootstrap is not enough:
shoring up the trusted computing base, Proceedings of the 11th
workshop on ACM SIGOPS European workshop, 2004.

[15] Tal Garfinkel, Ben Pfaff, and others, Terra: a virtual machine-based
platform for trusted computing, Proceedings of the nineteenth ACM
symposium on Operating systems principles, 2003.

[16] M. Nakamura, Seiji Munetoh, Designing a trust chain for a thin client
on a live Linux CD, Proceedings of the 2007 ACM symposium on
Applied computing, 2007.

[17] D. Safford and M. Zohar, A Trusted Linux Client (TLC), Technical
Paper, IBM Research, 2005.

[18] P. Englund, B. Lampson, 1. Manferdelli, M. Peinado, and B. Willman, A
trusted open platform, IEEE Spectrum, pages 55-62, 2003.

[19] TCG TPM Specification, Version 1.2, Trusted Computing Group, 2005,
https://www.trustedcomputinggroup.orgj.

[20] TCG Specification Architecture Overview, Revision 1.2, Trusted
Computing Group, April 2004,
https://www.trustedcomputinggroup.orgj.

[21] L. van Doom, G. Ballintign, and W. A. Arbaugh, Signed executablesfor
linux, Technical Report CS-TR-4259, University ofMaryland, 2001.

[22] Siani Pearson, Trusted Computing Platforms: TCPA Technology in
Context, Prentice Hall PTR, 2002.

[23] David Challener, Kent Yoder, Ryan Catherman, David Safford, Leendert
Van Doom, A Practical Guide to Trusted Computing, IBM Press, 1st
edition, January 2008.

