
A new approach for secure and portable OS

H. Rezaei Ghaleh
Islamic Azad University of Qazvin

hrezaei@qazviniau.ac.ir

M.A. Doustari
Shahed University of Tehran

doostari@shahed.ac.ir

Abstract

Data security has been an important concern from

many years ago and has gained special importance in
Information Technology. Since the present computer
systems use layered and modular architectures and
execute the instructions in a number of different phases,
therefore it has become an imperative to establish a
trusted chain between various layers. It usually is
integrity checking by hashing of executable codes. With
guarantee of software integrity, the web servers and
other network entities can trust to client systems or
workstations. Several methods have been proposed for
this purpose, each of them have their own advantages
and weakness. This paper is an attempt at evaluation of
these methods and proposes a new method called PCSM
which tries to overcome the weaknesses of previous
systems. This method is more flexible and transparent
and with the proposed architecture can prevent many
attacks and therefore provides higher level of security.
This paper is concluded with a comparison between the
proposed method and other methods.

1. Introduction

Security of information is an issue that has been

taken into consideration form many years ago and by
computer systems, this concept has gained further
importance. The trusted computing, in its wider sense,
comes under this concept and a group of big software
and hardware companies working in Information
Technology field known as Trusted Computing Group
(TCG) are engaged in designing and making standards
of various parts of trusted computer systems including
applications, PCs, networks, cryptography modules and
so on [22]. One topic which has gained the attention of
the said group is secure computer startup. As these days
the computer systems use layered and modular
architecture and execute the instruction in a number of
different phases, it is imperative to establish a trusted
chain between the layers. For example, when we are not
sure of the operating system's security and it being

cleared from malicious codes, we can not trust the
security of the application being executed by the system.
The secure startup of the computer means that we make
sure of the integrity of the each layer before its loading.
Consequently, when the system is booted we would be
certain that there exist no malicious code in it, or its data
have not been tempered by unauthorized persons.

There are various methods for achieving this
objective that each of them having their advantages and
disadvantages which will be consider in this paper. Also
in this paper, a method called PCSM has been proposed
which in addition to having most of the advantages of
the previous methods, has further parameters such as
portability of the secured data as well as more
flexibility. Meanwhile, by making use of the idea
suggested in this method, in return for losing a little
performance, a number of major attacks to the said
computer systems can be prevented.

In this paper, the earlier methods are briefly reviewed
and then PCSM along with hardware and software
architectures are explained. Next section is devoted to
evaluation of various security analyses such as
comparison of security goals. And finally, a summery of
the scheme and the conclusion is provided.

2. Related Works

Many projects have been down on secure booting of

computers with different approaches such as home and
network applications. In this section most of the efforts
made in this area are examined.

2.1. AEGIS

This method makes some modification on the

standard startup of the computer and by adding a chip to
the motherboard, uses this device as a root of trust. In
this method, the digital signature has been employed and
each layer before launching of the next layer verifies its
digital signature. By doing this, upon loading of each
layer, a chain of trust is formed. In case of any error
during this process, the system automatically connects to

The Second International Conference on Emerging Security Information, Systems and Technologies

978-0-7695-3329-2/08 $25.00 © 2008 IEEE

DOI 10.1109/SECURWARE.2008.34

28

The Second International Conference on Emerging Security Information, Systems and Technologies

978-0-7695-3329-2/08 $25.00 © 2008 IEEE

DOI 10.1109/SECURWARE.2008.34

28

a special server and recovers the lost module. The chip
used in this method contains codes needed for
cryptography, required network protocols for recovery
of the lost module and the digital signature of the one or
a number of lower layers of the system [8, 10 and 15].

2.2. sAEGIS

In this method some new capabilities have been

added to AEGIS and some improvements have been
made. One of these arrangements is using of smart card
for access to the system. This card contains the digital
signature of higher layers such as operating system and
applications and is protected by a PIN code [7].

2.3. U-Key Method

In this method, no modification is applied to the

standard startup of the computer and the digital
signature is generated for the higher layer only. Smart
card is used for storing the digital signature and private
key are also used in this method. Since the trusting point
of this method is system's BIOS, therefore its security
level is lower than the tow above mentioned methods.
But, this method is comparatively more flexible and it
could be used in wide range of systems [4].

2.4. Trusted Linux Client

The goal of the Trusted Linux Client (TLC) project is

to protect desktop and mobile Linux clients from on-line
and off-line integrity attacks, while remaining
transparent to the end user. This is accomplished with a
combination of a Trusted Computing Group Trusted
Platform Module (TPM) security chip, verification of
extensible trust characteristics, including digital
signatures, for all files, authenticated extended attributes
for trusted storage of the resultant file security meta
data, and a simple integrity oriented Mandatory Access
Control (MAC) enforcement module. The resultant
system defends against a wide range of attacks, with low
performance overhead, and with high transparency to
the end user [13, 14 and 20].

2.5. BitLocker

This method is a part of Windows Vista provided by

Microsoft and uses TPM. This software in order to
provide the highest level of security requires the TPM
hardware to be installed on the motherboard and
support special BIOS. The unique advantage of this
software is that it provides appropriate protection for the
user’s data through encryption before storing the data on
the hard disk and during the execution. It also provides
separate partitions for the operating system and its

modules and keeps them too as encrypted data and is
also capable of activating the access control service [5].

3. PCSM

3.1. General Design

The proposed method in this paper consists of several

security ideas. The first idea is that the required services
for securing the system, to be put in the layers lower
than the operating system. By doing this, viruses, worms
and other malicious programs, executed at the operating
system layer can not crash or tamper security services.
This idea is being currently used in most of the Internet
servers known as virtual servers. In this project a
middleware is designed which uses the virtual machine
for this purpose [3, 6, 9, 11, 12, 17 and 18].

Another concern is creation of a secure environment
for storing the user's private keys. In previously
mentioned methods, in order to create such
environment, TPM or a similar chip is used which
should be installed on the motherboard and keys are
defined corresponded to a specific machine. In this
project, the smart cart is used, which from the level of
security mechanisms and standards, is similar to that of
TPM and at the same time is portable and is defined
corresponded to a user.

The other idea is that the middleware as whole, to be
stored as an image in disk and by the time of booting is
loaded as Live-OS. In other words, a partition similar to
that of the partition of the hard disk is created virtually
on the main memory which is active while the system is
on and exits in memory by the time the system is turned
off [19].

For secure startup, modules such as boot loader and
middleware image are stored in a specific segment of
the disk which is read-only and for any modification, the
password authentication is required. By such
arrangement, the integrity of the lower layers is
guaranteed.

For protection of user's data, the data are encrypted
for storage during the execution. This could be done in
tow ways, first by using encrypted file systems which
use software for encryption and second by using
hardware-based encryption [2, 23 and 24].

Another idea is putting all the hardware and software
modules on a device with USB port which could be
easily carried by the user.

2929

3.2. Hardware Architecture

In this project all the hardware and software modules

are put in a special device with schematic architecture of
figure 1.

Figure 1: PCSM hardware architecture

As it is shown, this hardware consists of three main

parts including protected memory, secure token and
USB hub. The memory is divided into two partitions. In
one of them, the writing access by password is
controlled but there is no restriction for reading. The
other partition holds the data in encrypted form. The
specification of such memory has been standardized by
TCG group [25]. The secure token is a card reader based
on PC/SC standard which can hold a smart card with
SIM format. Within this card reader, there is a contact
smart card which supports ISO/IEC 7816 standard. The
third part is a USB hub which provides the output of the
tow other parts as a single USB port. All these parts are
gathered in a package and are connected to the computer
via USB port [1].

3.3. Software Architecture

In this project, the software architecture is designed

in a three layer form as shown in figure 2.
The lower layer shows the host's hardware. The Thin

OS is a customized small size and high speed operating
system. The Startup Services is responsible for
managing and executing special boot process and
providing the connection to the smart card. The CFS
section is responsible for encrypting of the stored data of
the upper layer on the relevant partition of the disk and
supports AES standard. The Security Service section
consist antivirus, firewall, intrusion detection and etc.

The VM is responsible for virtualization the
hardware for the upper layer and in fact is a computer
which could bee seen by the user. The upper layer is a
software layer and is similar to usual computer system
and has its own operating system, applications and data
[1].

Figure 2: PCSM software architecture

3.4. Boot Process

The execution process in PCSM is that upon the

turning the system on and completion of basic phases,
the controlling is transferred from BIOS to boot loader
installed on PCSM disk which has USB port.

Figure 3: PCSM boot process

The boot loader which is written on the read-only

memory loads the image of the middleware to the
system's main memory and passes the control to it. The
Thin OS connects to smart card and executes a program
which receives the PIN code from the user. This code is
then passed to the card and in case of its confirmation

3030

the Volume Encryption Key (VEK) is read from the
card. Then this key is passed to the CFS to be used as
encryption key.

At this stage the virtual machine which is loaded over
the CFS starts up. This machine loads the main
operating system of the user and the normal process of
loading of software starts.

Encryption of user's data and the main operating
system which are both located at the upper layer, is
carried out during the execution process and hidden
from the user. When the system is turned off, the Thin
OS comes out of the main memory and the system is
closed in a secure manner [1]. This process is shown in
figure 3.

3.5. Implementation Details

In this project, from the general design, a sample is

implemented. In this section, details of this
implementation are discussed.

In the said implemented sample, a device called SIM
Reader Combo made by Eutron has been used. This
device has a 2 GB flash memory and the card reader of
CardMan 6121 model made by OmniKey has been used.

In the boot loader section, the GRUB software which
has a high degree of flexibility and customization has
been used. For Thin OS a special version of Linux
called Slax Frodo which has small size and is modular,
has been used. In PCSM, a number of modules are
added or taken away from the Thin OS. In the CFS
section, the TrueCrypt software which contains the
required algorithm of this project has been used.

Figure 4: The used memory by various sections
of the implemented PCSM

For programming environment and working with

smart card, J2SE along with libraries such as JPCSC and
card reader driver are used. The VMWare Player has
also been used as virtual machine. The figure 4 shows
the size of the used memory by each software section in

the implemented sample. The size of all components of
the middleware is less than 120 MB.

In contrast to the other methods, due to the special
feature of architecture of the PCSM, any kind of
operating system could be used in the upper layer (user
layer). In the implemented sample; the widely used
operating system (Windows XP Professional) has been
used [1].

4. Security Analysis

In this section we explain security goals of this

project and consider PCSM and other methods and
compare them. An important point is that we consider
off-line security attacks and defenses and these methods
do not support on-line attacks. In other word when these
attacks have been done that OS is off. In this situation
many attacks could occurred because OS protection and
permission services is not running.

Five main security goals are firmware integrity
guarantee, boot software integrity guarantee, OS
components integrity guarantee, critical application
integrity guarantee and user’s data privacy. They contain
active codes (executable and interpretable programs)
and configuration files. The comparison of these goals
has been summarized in table 1.

AEGIS and sAEGIS are same and both of them are
good in low-level software integrity guarantee such as
firmware, boot and OS because they need a chip on the
motherboard and can access it every time. But they have
not guaranteed high-level software such as applications
and they have not enough flexibility for support it.

The method that uses the U-Key has OS integrity and
some application integrity guarantee only, because it has
not access to a chip on the motherboard. TLC and
BitLocker that use TPM have acceptable security level
in all of the five goals. They have a chip on the
motherboard and required software libraries for access it
in high-level software. But they are not suitable for our
purpose for portable OS. They are very coupled with
hardware and they support specific OS.

PCSM has acceptable security level in all security
goals except firmware integrity guarantee because
firmware is not fixed in different machines. Each
machine has special hardware such as BIOS,
motherboard, PCI cards and so on. PCSM can guarantee
boot software and its middleware integrity by write-
protected partition on disk. Also when we use virtual
encrypted volume for saving, OS and application
integrity has been guaranteed and user’s data privacy is
supported because a key (VEK) is needed for read or
write and this key has been stored in smart card
securely.

3131

Table 1. Comparison of security goals
 AEGIS sAEGIS U-Key TLC BitLocker PCSM

Firmware Integrity Yes Yes No Yes Yes No
Boot Integrity Yes Yes No Yes Yes Yes
OS Integrity Yes Yes Yes Yes Yes Yes

Application Integrity No No No Yes Yes Yes
Data Privacy No No No Yes Yes Yes

5. Performance Evaluation

We have done some performance tests for evaluating
PCSM. These tests were done on legacy OS (Windows
XP) and PCSM (with Windows XP for guest OS). Also
we used PassMark™ Performance Test that is software
with many tools for performance tests such as CPU,
memory and disk test suits. Our test system had Intel
Pentium IV CPU with 3 GHz, 2048 KB cache size, 400
MB available RAM and FAT32 file system. Tow
important difference between legacy OS and virtual OS
were that available RAM in virtual OS was 128 MB
because host OS need separated memory, although this
is configurable and we can increase the guest OS
memory. The results have been summarized in figure 5.
We have tested three main performance entity include
CPU, memory and disk. Figure 5.A shows comparison
for CPU tests. In this test we have done different 8 tests
such as floating point math, finding prime number and
image rotation. In figure 5.B memory test results have
been shown and we can see that scores are very close.
This test includes some parameters such as allocate
small block, read cached and uncached data and write to
memory. Last test suite is disk test that has been shown
in figure 5.C. Disk is very important actor because
usually it is bottleneck for total performance. This test
includes sequential read, sequential write and random
seek for read and write.

Figure 5.A: CPU test results

Figure 5.B: Memory test results

Figure 5.C: Disk test results

We see that CPU and memory have little difference
in legacy and virtual OS. In other word virtualization
has small and acceptable overhead. Also nowadays
virtual machines have 80 to 90 percent performance in
comparison with native.

But we see that the disk performance has more
difference. The reason for this is that PCSM uses
virtualization and software-based encryption.
Encryption is performed by software, its algorithm is
AES and all of data include user's data and OS are
encrypted. If we use hardware-based encryption then we
have not any encryption overhead in software layer.
Some existing disks with encryption in firmware have
efficiency about 90 percent.

3232

6. Conclusion

This paper has reviewed the various introduced

methods for securing client OS and then a new method
called PCSM was proposed and was evaluated from
security and performance perspective along with other
methods. It became clear that this method is more
flexible and has higher degree of portability. This
method, due to its special architecture, is capable of
preventing various security threats and therefore
provides an acceptable level of security for personal
computers and workstations connected to the network.

7. References

[1] H. Rezaei Ghaleh, PC Secure Bootstrapping, M.Sc. Thesis,
Islamic Azad University of Qazvin, March 2008.
[2] Michael Austin Halcrow, eCryptfs: An Enterprise-class
Cryptographic Filesystem for Linux, International Business
Machines Inc., 2005.
[3] Paul Barham, Boris Dragovic, and others, Xen and the art
of virtualization, Proceedings of the nineteenth ACM
symposium on Operating systems principles, 2003.
[4] Peng Shaunghe, Han Zhen, Enhancing PC Security with a
U-Key, IEEE Security and Privacy, Volume 4, Issue 5,
September 2006.
[5] BitLocker Drive Encryption Technical Overview, Microsoft
TechNet, 2008.
[6] Peter M. Chen, Brian D. Noble, When Virtual Is Better
Than Real, Proceedings of the Eighth Workshop on Hot
Topics in Operating Systems, IEEE Computer Society , 2001.
[7] Naomaru Itoi, William A. Arbaugh, Samuela J. Pollack,
Daniel M. Reeves, Personal Secure Booting, Proceedings of
the 6th Australasian Conference on Information Security and
Privacy, Springer-Verlag, 2001.
[8] William Albert Arbaugh, Chaining layered integrity
checks, University of Pennsylvania, Philadelphia, PA, USA,
1999.
[9] Bernhard Kauer, OSLO: Improving the security of Trusted
Computing, Technische Universität Dresden, Department of
Computer Science, 2007.
[10] Arbaugh, Farber, Smith, A secure and reliable bootstrap
architecture, IEEE Symposium on Security and Privacy, 1997.
[11] Hermann Hartig, Security architectures revisited,
Proceedings of the 10th workshop on ACM SIGOPS European
workshop, 2002.
[12] Daniela A. S. de Oliveira, Jedidiah R. Crandall, and
others, ExecRecorder: VM-based full-system replay for attack
analysis and system recovery, Proceedings of the 1st workshop
on Architectural and system support for improving software
dependability, ACM, 2006.
[13] Hiroshi Maruyama and others, Linux with TCPA Integrity
Measurement, IBM Research, Tokyo Research Laboratory,
January 28, 2003.
[14] Hiroshi Maruyama and others, Trusted Platform on
demand (TPod), IBM, February 1, 2004.
[15] William A. Arbaugh, Angelos D. Keromytis, David J.
Farber, and Jonathan M. Smith, Automated Recovery in a
Secure Bootstrap Process, Network and Distributed System
Security Symposium, Internet Society, March 1998.

[16] James Hendricks, Leendert van Doorn, Secure bootstrap
is not enough: shoring up the trusted computing base,
Proceedings of the 11th workshop on ACM SIGOPS European
workshop, 2004.
[17] Tal Garfinkel, Ben Pfaff, and others, Terra: a virtual
machine-based platform for trusted computing, Proceedings of
the nineteenth ACM symposium on Operating systems
principles, 2003.
[18] Tal Garfinkel, Mendel Rosenblum, When virtual is harder
than real: security challenges in virtual machine based
computing environments, Proceedings of the 10th conference
on Hot Topics in Operating Systems , IEEE, 2005.
[19] M. Nakamura, Seiji Munetoh, Designing a trust chain for
a thin client on a live Linux CD, Proceedings of the 2007
ACM symposium on Applied computing, 2007.
[20] D. Safford and M. Zohar, A Trusted Linux Client (TLC),
Technical Paper, IBM Research, 2005.
[21] TCG TPM Specification, Version 1.2, Trusted Computing
Group, 2005, https://www.trustedcomputinggroup.org/.
[22] TCG Specification Architecture Overview, Revision 1.2,
Trusted Computing Group, April 2004,
https://www.trustedcomputinggroup.org/.
[23] TCG Storage Architecture Core Specification, Revision
0.9, Trusted Computing Group, May 2007,
https://www.trustedcomputinggroup.org/.
[24] Siani Pearson, Trusted Computing Platforms: TCPA
Technology in Context, Prentice Hall PTR, 2002.
[25] David Challener, Kent Yoder, Ryan Catherman, David
Safford, Leendert Van Doorn, A Practical Guide to Trusted
Computing, IBM Press, 1 edition, January 6, 2008.

3333

