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Abstract— A significant challenge in blockchain and 

cryptocurrencies is protecting private keys from potential 

hackers because nobody can rollback a transaction made 

with a stolen key once the blockchain network confirms the 

transaction. The technical solution to protect private keys 

is cryptocurrency wallets, a piece of software, hardware, or 

a combination of them to manage the keys. In this paper, 

we propose a multilayered architecture for cryptocurrency 

wallets based on a Defense-in-Depth strategy to protect 

private keys with a balance between convenience and 

security. The user protects the private keys in three 

restricted layers with different protection mechanisms. So, 

a single breach cannot threaten the entire fund, and it saves 

time for the user to respond. We implement a proof-of-

concept of our proposed architecture on both a smart card 

hardware wallet and an Android smartphone wallet with 

no performance penalty. Furthermore, we analyze the 

security of our proposed architecture with two adversary 

models.  

Keywords—blockchain, cryptocurrency, wallet, defense-

in-depth, bitcoin. 

I. INTRODUCTION 

Cryptocurrencies are not currency until the owners can 

purchase something with them. Today, a user can perform 

various electronic commerce transactions like paying a 

bill [1], booking a hotel or flight [2], purchasing online 

products [3], and paying taxes [4] with cryptocurrency.  

As blockchain and cryptocurrencies become 

increasingly popular and practical in electronic 

commerce, they also become more attractive targets for 

hackers. Every week, we read the news of stealing money 

from exchanges, servers, and cryptocurrency owners. A 

big challenge in bitcoin and almost all blockchains is 

protecting the private keys of cryptocurrency owners. 

Blockchain usually uses elliptic-curve asymmetric 

cryptography to control the ownership of coins or 

accounts. For example, when Alice signs a transaction 

with her private key to transfer coins to Bob, the 

blockchain network will verify the signature of the 

transaction with Alice's public key. After being confirmed 

by the blockchain network, the transaction, unlike the 

traditional bank transfer, cannot be rolled back by anyone. 

Consequently, the private key has full control of the 
crypto funds, and the most crucial task of a user is 
keeping her private keys safe. It is one of the fundamental 
challenges in cryptocurrencies [5]. Existing systems 
require a particular software or hardware called 
cryptocurrency wallet to store the private keys and sign 
the transactions. Cryptocurrency wallets have a spectrum 
of forms from online wallets to cold wallets, while many 
experts believe the most secure one is the hardware 
wallet. The hardware wallets are good but not enough 
because they are hard to use in comparison to hot wallets 
(i.e., software wallets) and smartphone wallets. We need 
an appropriate setup when using hardware wallets to 
achieve a balance between convenience and security.  

Defense-in-Depth (DiD) is an approach in IT security 
that usually conveys multiple layers with various security 
mechanisms to protect a system from attacks in several 
steps. DiD applies to all IT systems and is a standard 
solution for network security. In this paper, we propose a 
multi-layer architecture that provides a Defense-in-Depth 
design for cryptocurrency wallets. We propose a layered 
deployment of wallets that delivers a balance between 
convenience with security for cryptocurrencies. The user 
protects the private keys in three restricted layers with 
different protection mechanisms. So, a single breach 
cannot threaten the entire fund, and it saves time for the 
user to respond. This paper provides the following 
research contributions: 

• Proposing a layered architecture for cryptocurrency 
wallets that is secure yet convenient for average users 
 

• Implementing a proof-of-concept on a hardware 
wallet and an android wallet and evaluating its 
performance 
 

• Providing adversary models to analyze the security of 
the proposed layered architecture 

 

In the rest of this paper, in section II we review 
previous works to use in our proposed architecture. Next, 
we explain our proposed layered architecture for 
cryptocurrency wallets in section III and our proof-of-
concept implementation in section IV. Finally, in section 
V, we provide adversary models to analyze the security 
of our proposed model and finish with the conclusion in 
section VI. 



II. RELATED WORKS 

In this section, we review two related works that we 
will use to create a multi-layer architecture for 
cryptocurrency wallets. 

A. Wallet Backup 

Existing cryptocurrency wallets usually use the paper 

backup. The wallet generates a mnemonic word list to 

convert the master seed from digital form to physical form 

as a backup [7]. The user may either save these words in a 

computer file or writes them down on a piece of paper. In 

our previous paper [8], we suggest a new mechanism to 

back up a wallet on another wallet directly with the 

elliptic-curve Diffie-Hellman key agreement.  

In contrast to the paper-based backup, our scheme uses 

Elliptic-Cure Cryptography (ECC) to transfer the keys to 

another wallet. So, the user does not need to either write a 

list of words or remember a complex long passphrase.  

Our new scheme uses elliptic-curve cryptography to 

back up the keys. It employs a crafted version of the 

Elliptic-Curve Diffie-Hellman (ECDH) key agreement 

protocol [9] for backup and recovery. The problem of 

ECDH is the Man-In-The-Middle attack where a hacker 

replaces the public key of the backup wallet by a fake 

public key, and the main wallet cannot distinguish the 

original backup public key from the fake one. To solve 

this problem, we employ the side-channel user visual 

confirmation (verification code, aka vcode). Existing 

hardware wallets use a similar method to confirm 

transaction information like the receiver address, amount, 

and fee before signing  [10] [11]. 

In the backup process, there are two wallets: the main 

wallet and the backup wallet. Before start, the main wallet 

has generated and stored the master seed, and the goal of 

our proposed backup process is to transfer an encrypted 

copy of the master seed from the main wallet to the backup 

wallet. We assume both wallets have a screen and (at least) 

one physical button. Also, we assume the backup channel 

is an untrusted terminal, like a smartphone that may be 

compromised by a hacker. The vcode is displayed on the 

hardware wallets' screen for user verification. The values 

shown on the two wallets' screen should be identical. 

B. Super-Wallet and Sub-Wallet 

Storing all funds on only one wallet and use that for 

daily spending is risky because it is possible that the wallet 

crashes, gets damaged, or stolen. So, the authors of [5] 

propose a simple but useful idea called super-wallet and 

sub-wallet. The user stores the large fund on the super-

wallet and refills a small fund to the sub-wallet frequently 

or as needed. So, she uses the sub-wallet for daily 

spending and the super-wallet as a saving account. 

The sub-wallet/super-wallet model proposed in [5] is 

simple. The user has two regular wallets and uses one of 

them as the super-wallet and another one as the sub-wallet. 

One disadvantage of this model is that it requires one 

transaction per refill, which means that the user pays a 

miner fee and waits for the network confirmations for each 

small refilling. Also, the user must get backup of both 

wallets, and the sending transaction is vulnerable to the 

MITM (Man-In-The-Middle) attack for receiving address 

injection like other regular sending transactions.   

To resolve these challenges in the super-wallet/sub-

wallet model, we propose a new scheme that we call the 

Deterministic Sub-wallet [12]. In our model, the root of 

key trees of the super-wallet and sub-wallet are linked. In 

other words, the sub-wallet seed is derived from the super-

wallet seed. It means that the super-wallet seed can 

generate the entire key tree of the super-wallet and also all 

the sub-wallets. So, the super-wallet does not require to 

get the sub-wallet address from the external source, and it 

generates them internally. It also eliminates the sub-wallet 

backup process because the super-wallet backup is 

enough, and it can regenerate the sub-wallet seeds. 

To link the super-wallet seed (mSeed) to the sub-wallet 

seeds (subSeed) we use the following derivation function 

in [12]. This formula is similar to the existing master key 

generation function in  [6] with some modifications. The 

xxxx is the four-digit hexadecimal index of the sub-wallet 

starting from zero. The output of this function is a 512-bit 

deterministic pseudo-random value, which can be used as 

a regular seed to generate the entire key tree of the sub-

wallet. 
 

subSeed = HMAC-SHA512( key="Sub-wallet xxxx", 

   data=mSeed ) 
 

We use a modified version of our proposed mechanism 

[8] to transport a sub-wallet seed from the super-wallet to 

the sub-wallet. The modified version uses the same steps 

but transports a sub-wallet seed instead of a master seed. 

It uses ECDH to encrypt the seed and vcode as the side-

channel user visual confirmation. After that, the super-

wallet creates a refill transaction and publishes it on the 

blockchain to send funds to the sub-wallet addresses. 

III. PROPOSED MULTI-LAYER WALLET 

To protect the private keys from attackers, we introduce 

a defense-in-depth architecture for cryptocurrency 

wallets. Our proposed architecture has three layers with 

different usage and protection mechanisms, which makes 

a balance between usability and security. Figure 1 

demonstrates this architecture. It has three layers, 

including offline layer, protected layer, and online layer. 

The protected layer consists of a superior wallet. This 

wallet conveys the master seed, which generates the entire 

key tree and all addresses. The offline layer has at least 

one backup wallet where it is a clone of the superior 

wallet. We use our previously proposed method in [8] for 

encrypted wallet-to-wallet cloning. The online layer can 

have multiple spending wallets for regular daily 

purchases. A spending wallet has a subordinate seed from  



 
 

Figure 1. The proposed multi-layer defense-in-depth architecture for 

cryptocurrency wallets 

the superior wallet with a limited fund. We use our 

previously proposed mechanism in [12] for key derivation 

to generating subordinate seeds and seed transferring from 

superior wallet to a spending wallet. 

We have revised our previous algorithm [12] to support 

our new proposed architecture. Firstly, we modify the 

derivation function as follows where swSeed stands for 

spending wallet seed, mSeed stands for master seed, and 

xxxx indicates the spending wallet index starts from zero 

in 4-digit hex number format (0000). 

 

swSeed = HMAC-SHA512( key="swSeed xxxx",  

  data=mSeed ) 

 

The superior wallet uses the derivation function only 

when it creates a new seed for a spending wallet.  

Secondly, we also modify the refilling address selection 

policy. On the original work [12], the wallet only refills 

the first address index of each derived seed. However, in 

our new proposed architecture, the superior wallet uses 

multiple addresses of a spending wallet seed. For each 

refilling, it searches the blockchain to find the first unused 

address to send the fund. 

The offline layer is designed to be offline and does not 

need any connection to the blockchain network. It gets 

online if and only if an incident occurs for the superior 

wallet and needs an emergency response. If the superior 

wallet is compromised by an attack or is lost, the backup 

wallet generates a brand-new master seed. It creates a 

blockchain transaction to transfer all available funds of the 

last master seed to an address under the new master seed. 

It avoids any unintended transfer from the superior wallet 

as soon as possible. We recommend a secure hardware 

wallet with a secure element, a trusted display, and an 

embedded button for the backup wallet. 

The protected layer has only one superior wallet. This 

wallet only refills the spending wallets. It calculates the 

spending wallet addresses internally, so it does not send 

any fund to other addresses that are vulnerable to MITM 

attack for receiving address injection. Similar to the 

backup wallet, we recommend a secure hardware wallet 

for the superior wallet too. 

Finally, the online layer can have multiple spending 

wallets. These wallets can be software wallets like 

smartphone wallets or hot wallets (third-party hosted 

wallets). Spending wallets do not need a backup because 

the superior wallet can recreate their seeds [12]. 

These three layers provide a balance between security 

and usability. While the user stores her large fund on the 

superior wallet and creates a clone of it on the backup 

wallet, she enjoys the convenience of a smartphone wallet 

or hot wallet to purchase online and pay her expenses. 

Receiving funds does not need private keys, so there are 

two possible options. If the user context does not have 

privacy concerns, she can generate an address under 

master seed on the superior wallet to share with others. If 

the context is sensitive to privacy, the superior wallet 

creates an extended public key to generates hierarchical 

deterministic addresses outside of the superior wallet 

without exposing the master seed or any private keys [6]. 

For better understanding, we explain an example setup. 

Alice has 10 Bitcoin (BTC) equals to $100k (we assume 

the bitcoin price is $10,000 for simplicity). She stores her 

fund into the superior wallet, which is a secure hardware 

wallet and keeps it safe at her home. She creates a backup 

wallet, which is a secure hardware wallet too, and put it in 

a safe deposit box in a bank that is physically secure. Then, 

she installs a wallet app on her smartphone and makes it a 

spending wallet under the superior wallet and refills 0.5 

BTC ($5K) into it. To receive her salary, she gets a 

receiving address from the superior wallet and shares it 

with her employer. She gets paid bi-weekly with bitcoin 

without requiring using the superior wallet. Alice uses the 

smartphone to buy a coffee, pay the bills, and purchase 

from online stores. When the spending wallet has a low 

balance, she refills it using the superior wallet.  

For convenience, Alice uses a type of hardware wallet 

for superior wallets and backup wallets that support 

Bluetooth or NFC, and she can do backup and refilling 

operations using a smartphone. However, she may use an 

offline laptop or another offline smartphone for better 

protection to do the backup and refilling. 

Now, we consider two possible security incidents and 

how the defense-in-depth architecture mitigates them. 

First, assume an incident in the online layer, for example, 

Alice loses her smartphone or recognizes a malware 

program on her smartphone. In this scenario, only the 

spending wallet is at risk with a maximum of 0.5 BTC 

amount. To respond to this incident, she uses superior 

wallet to transfer the fund of the suspected spending wallet 



to an address under the master seed. Then, she can reset 

her smartphone or get a new one, and the superior wallet 

generates a brand-new spending wallet seed and transfers 

the seed to the smartphone.  

Secondly, an incident can occur in the protected layer. 

For example, Alice may lose the superior wallet because 

of the physical robbery in her home. Since she uses a 

secure hardware wallet for the superior wallet, it is 

password protected and, if an attacker tries password 

guessing more than the retry counter (i.e., five times), the 

wallet will be blocked permanently. On the other hand, for 

responding to this incident, Alice uses the backup wallet 

to generate a brand-new master seed and create a 

blockchain transaction to transfer all funds from the 

previous master seed to an address under the new master 

seed. She should do that as soon as possible before any 

breach of the suspected superior wallet. She also must 

create a new backup and regenerate the subordinate 

spending wallets. 

IV. PROOF-OF-CONCEPT 

To evaluate our proposed architecture on bitcoin, we 

implement the backup wallet and the superior wallet on a 

hardware wallet device from scratch that supports 

fundamental functionalities of hierarchical deterministic 

wallets, according to BIP-32 [6] and BIP-44 [13]. We use 

a secure element for key operations such as key generation 

and digital signature. 

We choose a smart card that has essential parts of a 

secure hardware wallet. It has a secure element for 

cryptography operations and key storage, a screen to 

display sensitive information to the user, and a button to 

get confirmation from the user. Figure 2 demonstrates a 

picture of our test device. This device is in credit card size 

and has NFC and contact interfaces to communicate. 

Our test smart card has the following specification; Java 

Card 3.0.5, Global Platform 2.2.1, e-paper display 

256x256 pixel, 2.5 KB memory, 170 KB storage, contact 

and NFC interfaces, support for SHA256, SHA512, 

HMAC, AES256, ECC256, and ECDH algorithm. 

Since the secure element is a resource-constraint device 

with limited memory and processing ability, our code 

must use the minimum amount of memory. We use the 

sharing memory technique and allocate the entire memory 

to only two arrays. We pass these arrays with the 

maintained indexes to the functions that require arrays, 

and it minimizes the heap consumption. 

Furthermore, we do not use a very nested function and 

any recursive call, and it minimizes stack memory usage. 

We use the Java Card framework [14] to program the 

secure element. It is a limited version of Java Virtual 

Machine with fewer features to run on microcontrollers 

and secure elements. We compile the code with the Java 

Development Kit, convert it to a Card Application (CAP), 

and load it into the secure element. 

 

Figure 2. Test device with secure element, screen, and button to create 

a hardware wallet 

One of our implementation challenges is the public key 

derivation. In ECC, a public key calculates by multiplying 

the private key and the Generator point (G) [15]. 

Unfortunately, our secure element (and many others) does 

not support EEC multiplication, and its software 

implementation has no acceptable performance due to the 

limited resources of the secure element. However, Java 

Card API and our secure element support Elliptic-Curve 

Diffie-Hellman (ECDH) key agreement. In ECDH, each 

party calculates a secret by multiplying its private key and 

the other party public key. An ECC public key is an 

elliptic-curve point aka EC point. Therefore, the ECDH 

function mathematically multiplies a scaler and an EC 

point. We use the ECDH function with the private key as 

the scaler and the Generator point (G) as the EC point. 

Thus, the result of ECDH is the public key. 

For the spending wallet, we develop a mobile app to test 

our prototype with a smartphone. We use a Google Pixel 

smartphone with an NFC antenna and the following 

specifications: Google Pixel G-2PW4100 smartphone, 

quad-core Qualcomm Snapdragon 821 processor with two 

2.15 GHz cores and two 1.6 GHz cores, 4 GB memory, 32 

GB storage, and Android 8.1.0.  

According to our evaluation, the total execution time 

for creating a backup on the test smart card takes less than 

one second to complete based on our prototype [8]. The 

derivation mechanism and refilling a spending wallet also 

can complete around one second [12].  

V. SECURITY ANALYSIS 

In this section, we analyze the security aspect of our 

proposed architecture and the implemented proof-of-

concept on hardware wallets and smartphones. Firstly, we 

argue about the security advantages of our proposed 

architecture in comparison to the existing solutions. Next, 

we provide appropriate adversary models to investigate 

the possible major attacks and countermeasures. 

A. Security Advantages 

No Paper Backup: Spending wallets do not need any 

backup, and the superior wallet has one or more identical 

backup on other hardware wallets. Therefore, all backups 

are in digital format, and there is no physical backup on a 

paper that is vulnerable to traditional attacks.  

Screen
(E-Paper)

Buttons

Programmable
Secure Element

Logo for NFC Antenna

Hidden MCU

MCU



TABLE I.  ADVERSARY MODEL I: MALICIOUS APP WITH DANGEROUS PERMISSION 

Assumptions Goals Capabilities 

• Android 8.1.0 

• Internet access 

• NFC access 

• Knowledge of the low-level 

wallet protocol (APDUs) 

• Capture the master seed 

or sub seed 

• Inject the adversary 

address to receive the 

fund 

• Record the screen or log the pressed buttons to capture the password 

• Sniff the low-level packets to capture the master seed or spending seed 

• Inject the adversary address into spending wallet refill transaction to 

receive the fund (MITM) 

• Replace the backup or spending wallet original transport public key 

with the adversary public key to extract the master seed or spending 

seed (MITM) 

Less Vulnerable to Lose Large Amount: In our 

architecture, we split the fund between two layers. The 

protected layer stores a large amount and is used rarely, 

while the online layer stores a small amount and is used 

frequently. Therefore, a spending wallet is more exposed 

to the network and accessible for attacks; however, it has 

a small fund at risk. On the other hand, the superior wallet 

is less accessible on the network, and hence, more secure 

to possible attacks. 

Control of spending wallets: The superior wallet can 

regenerate the spending wallet seed and all corresponding 

keys. Therefore, if a spending wallet is lost or stolen, the 

user can use the superior wallet to recover all spending 

wallet keys and transfer their funds to a brand-new address 

and empties the spending wallet. 

B. Adversary Models 

Authors of [16] survey security analyses on several 

papers and propose a comprehensive adversary model to 

employ in future security researches. This model defines 

three aspects of an adversary, including Assumptions, 

Goals, and Capabilities. The assumptions describe the 

environment, resources, and equipment of the adversary. 

The goals identify the intentions of the adversary and 

explain why he targets the system. The capabilities are the 

abilities and actions that the adversary performs to achieve 

his goals. 

The authors of [16] discuss various adversary models 

for diverse environments like personal computers, 

networks, and cryptography parties. We use the models of 

the smartphone environment to measure the security of 

our final prototype on an Android smartphone. 

1) Malicious App Adversary Model 

The adversary model has different properties in various 

fields of study, and the authors of [16] provide several 

adversary models for smartphone applications. Their 

proposed Malicious App Adversary Model is appropriate 

for our conditions. This model includes three sub-models 

based on the app permissions: Zero Permission Adversary 

only has access to the list of installed apps and files stored 

on external storage. Normal Permission Adversary adds 

Internet access, Bluetooth, and NFC interfaces. Finally, 

Dangerous Permission Adversary has access to all 

resources such as camera, microphone, contact, and SMS. 

In this paper, we use the Dangerous Permission Adversary 

model to assume maximum power for the attacker that is 

defined in TABLE I. 

According to TABLE I., the adversary could capture 

the user's password by recording the screen or log the 

pressed buttons. Even though some solutions exist for this 

attack like Trezor [17] that uses a blind visual matrix to 

avoid entering a plain password on the host, we use a 

physical button on the hardware wallet for confirmation.  

Also, the adversary may sniff the transmitted messages 

between hardware wallets and the smartphone app to 

eavesdrop the master seed or spending seed. Our 

mechanism is secure against this attack because the 

smartphone only transmits public information, including 

the superior wallet, the backup wallet and spending wallet 

public keys, and encrypted master seed or encrypted seed 

under an AES 256-bit key. Therefore, the attacker does 

not have access to any private data. 

Another capability of the adversary is making an MITM 

attack to replace the receiver address by his injected 

address in the transaction. The classic super-wallet/sub-

wallet model [5] is vulnerable to this attack because the 

super-wallet needs to get the sub-wallet address from the 

host like a smartphone. However, in our architecture, we 

use the deterministic sub-wallet that prevents this attack 

since the spending wallet seeds are derived from the 

superior wallet master seed, and the superior wallet 

generates the receiving addresses internally. Therefore, 

there is no need to get the receiving addresses from the 

external source, and the hacker has no chance to replace 

them. 

Last but not least, the adversary may make an MITM 

attack to intercept the messages between the superior 

wallet and the backup wallet or the superior wallet and the 

spending wallet. Then, he replaces the backup wallet 

public key or the spending wallet public key by the 

adversary public key in ECDH key agreement, and he can 

recover the transferred seed. 

To defend against this attack, we have used a side-

channel verification code (vcode) in our mechanism. Both 

wallets compute their vcodes of the public key and display 

the vcode on their screens (see the hardware wallet shown 

in Figure 2). The user visually inspects and confirms the 

equality of these two vcodes by pressing a physical button 

on the superior wallet. Existing hardware wallets use a 



similar method to confirm transaction information like 

receiver address, amount, and fee before signing them. 

Therefore, during the wallet transfer operation, if a hacker 

injects his public key to the superior wallet, the user will 

be able to detect such an attack due to the mismatch of the 

two vcodes shown on two wallets' screen and reject this 

MITM attack. 

2) Physical Access Adversary Model 

Another possible adversary model for our proposed 

architecture is an adversary with physical access to the 

superior wallet (or backup wallet). In this case, the 

adversary can do anything directly with the hardware 

wallet without the need to install a malicious app on the 

remote user's smartphone. TABLE II. demonstrates the 

Physical Access Adversary Model. 

TABLE II.  ADVERSARY MODEL II: PHYSICAL ACCESS 

Assumptions Goals Capabilities 

• Access to the 

hardware wallet 

device 

• Knowledge of 

the low-level 

wallet protocol 
(APDUs) 

• Sign a 

transaction and 

send the fund to 

the adversary 
address 

• Make a brute-

force attack to 

guess the 

password and 

sign a transaction 
to transfer the 

fund 

 

In this adversary model, the adversary can make a 

brute-force attack to obtain the hardware wallet password 

(PIN code) and sign his desired transaction. Our proposed 

architecture recommends a hardware wallet with a secure 

password for the superior wallet that has a fixed password 

retry counter, usually between 3 and 15. After that, the 

secure element locks permanently. It is a standard 

mechanism for secure elements. Therefore, if a hacker 

finds the superior wallet, he can only try a limited number 

of guessed passwords and could not make a brute-force 

attack. For instance, if the PIN code length is four digits 

and the retry counter is 10, the chance to find the PIN code 

is 0.001 (tries / possible PINs = 10/104 = 0.001). On the 

other hand, the user has time to use her backup wallet to 

transfer all funds to a brand-new seed as soon as possible. 

We must mention that the attacks to the security 

element or other hardware parts and their countermeasures 

are out of the scope of this paper and apply to entire 

hardware wallets not specific for our proposed schemes. 

VI. CONCLUSION 

In this paper, we considered protecting private keys in 
cryptocurrency wallets for blockchain technology. Even 
though the most secure choice is hardware wallets, we 
argued that there are critical issues that should be 
addressed. We introduced a multi-layer architecture for 
cryptocurrency wallets to provide a Defense-in-Depth 
approach. For our proposed architecture, we 

implemented a proof-of-concept on a hardware wallet 
and Android smartphone. We also offered performance 
evaluation and security analysis for our proposed 
architecture. 
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