
Multilayered Defense-in-Depth Architecture for

Cryptocurrency Wallet

Hossein Rezaeighaleh

Department of Computer Science

University of Central Florida

Orlando, USA

rezaei@knights.ucf.edu

Cliff C. Zou

Department of Computer Science

University of Central Florida

Orlando, USA

czou@cs.ucf.edu

Abstract— A significant challenge in blockchain and

cryptocurrencies is protecting private keys from potential

hackers because nobody can rollback a transaction made

with a stolen key once the blockchain network confirms the

transaction. The technical solution to protect private keys

is cryptocurrency wallets, a piece of software, hardware, or

a combination of them to manage the keys. In this paper,

we propose a multilayered architecture for cryptocurrency

wallets based on a Defense-in-Depth strategy to protect

private keys with a balance between convenience and

security. The user protects the private keys in three

restricted layers with different protection mechanisms. So,

a single breach cannot threaten the entire fund, and it saves

time for the user to respond. We implement a proof-of-

concept of our proposed architecture on both a smart card

hardware wallet and an Android smartphone wallet with

no performance penalty. Furthermore, we analyze the

security of our proposed architecture with two adversary

models.

Keywords—blockchain, cryptocurrency, wallet, defense-

in-depth, bitcoin.

I. INTRODUCTION

Cryptocurrencies are not currency until the owners can

purchase something with them. Today, a user can perform

various electronic commerce transactions like paying a

bill [1], booking a hotel or flight [2], purchasing online

products [3], and paying taxes [4] with cryptocurrency.

As blockchain and cryptocurrencies become

increasingly popular and practical in electronic

commerce, they also become more attractive targets for

hackers. Every week, we read the news of stealing money

from exchanges, servers, and cryptocurrency owners. A

big challenge in bitcoin and almost all blockchains is

protecting the private keys of cryptocurrency owners.

Blockchain usually uses elliptic-curve asymmetric

cryptography to control the ownership of coins or

accounts. For example, when Alice signs a transaction

with her private key to transfer coins to Bob, the

blockchain network will verify the signature of the

transaction with Alice's public key. After being confirmed

by the blockchain network, the transaction, unlike the

traditional bank transfer, cannot be rolled back by anyone.

Consequently, the private key has full control of the
crypto funds, and the most crucial task of a user is
keeping her private keys safe. It is one of the fundamental
challenges in cryptocurrencies [5]. Existing systems
require a particular software or hardware called
cryptocurrency wallet to store the private keys and sign
the transactions. Cryptocurrency wallets have a spectrum
of forms from online wallets to cold wallets, while many
experts believe the most secure one is the hardware
wallet. The hardware wallets are good but not enough
because they are hard to use in comparison to hot wallets
(i.e., software wallets) and smartphone wallets. We need
an appropriate setup when using hardware wallets to
achieve a balance between convenience and security.

Defense-in-Depth (DiD) is an approach in IT security
that usually conveys multiple layers with various security
mechanisms to protect a system from attacks in several
steps. DiD applies to all IT systems and is a standard
solution for network security. In this paper, we propose a
multi-layer architecture that provides a Defense-in-Depth
design for cryptocurrency wallets. We propose a layered
deployment of wallets that delivers a balance between
convenience with security for cryptocurrencies. The user
protects the private keys in three restricted layers with
different protection mechanisms. So, a single breach
cannot threaten the entire fund, and it saves time for the
user to respond. This paper provides the following
research contributions:

• Proposing a layered architecture for cryptocurrency
wallets that is secure yet convenient for average users

• Implementing a proof-of-concept on a hardware
wallet and an android wallet and evaluating its
performance

• Providing adversary models to analyze the security of
the proposed layered architecture

In the rest of this paper, in section II we review
previous works to use in our proposed architecture. Next,
we explain our proposed layered architecture for
cryptocurrency wallets in section III and our proof-of-
concept implementation in section IV. Finally, in section
V, we provide adversary models to analyze the security
of our proposed model and finish with the conclusion in
section VI.

II. RELATED WORKS

In this section, we review two related works that we
will use to create a multi-layer architecture for
cryptocurrency wallets.

A. Wallet Backup

Existing cryptocurrency wallets usually use the paper

backup. The wallet generates a mnemonic word list to

convert the master seed from digital form to physical form

as a backup [7]. The user may either save these words in a

computer file or writes them down on a piece of paper. In

our previous paper [8], we suggest a new mechanism to

back up a wallet on another wallet directly with the

elliptic-curve Diffie-Hellman key agreement.

In contrast to the paper-based backup, our scheme uses

Elliptic-Cure Cryptography (ECC) to transfer the keys to

another wallet. So, the user does not need to either write a

list of words or remember a complex long passphrase.

Our new scheme uses elliptic-curve cryptography to

back up the keys. It employs a crafted version of the

Elliptic-Curve Diffie-Hellman (ECDH) key agreement

protocol [9] for backup and recovery. The problem of

ECDH is the Man-In-The-Middle attack where a hacker

replaces the public key of the backup wallet by a fake

public key, and the main wallet cannot distinguish the

original backup public key from the fake one. To solve

this problem, we employ the side-channel user visual

confirmation (verification code, aka vcode). Existing

hardware wallets use a similar method to confirm

transaction information like the receiver address, amount,

and fee before signing [10] [11].

In the backup process, there are two wallets: the main

wallet and the backup wallet. Before start, the main wallet

has generated and stored the master seed, and the goal of

our proposed backup process is to transfer an encrypted

copy of the master seed from the main wallet to the backup

wallet. We assume both wallets have a screen and (at least)

one physical button. Also, we assume the backup channel

is an untrusted terminal, like a smartphone that may be

compromised by a hacker. The vcode is displayed on the

hardware wallets' screen for user verification. The values

shown on the two wallets' screen should be identical.

B. Super-Wallet and Sub-Wallet

Storing all funds on only one wallet and use that for

daily spending is risky because it is possible that the wallet

crashes, gets damaged, or stolen. So, the authors of [5]

propose a simple but useful idea called super-wallet and

sub-wallet. The user stores the large fund on the super-

wallet and refills a small fund to the sub-wallet frequently

or as needed. So, she uses the sub-wallet for daily

spending and the super-wallet as a saving account.

The sub-wallet/super-wallet model proposed in [5] is

simple. The user has two regular wallets and uses one of

them as the super-wallet and another one as the sub-wallet.

One disadvantage of this model is that it requires one

transaction per refill, which means that the user pays a

miner fee and waits for the network confirmations for each

small refilling. Also, the user must get backup of both

wallets, and the sending transaction is vulnerable to the

MITM (Man-In-The-Middle) attack for receiving address

injection like other regular sending transactions.

To resolve these challenges in the super-wallet/sub-

wallet model, we propose a new scheme that we call the

Deterministic Sub-wallet [12]. In our model, the root of

key trees of the super-wallet and sub-wallet are linked. In

other words, the sub-wallet seed is derived from the super-

wallet seed. It means that the super-wallet seed can

generate the entire key tree of the super-wallet and also all

the sub-wallets. So, the super-wallet does not require to

get the sub-wallet address from the external source, and it

generates them internally. It also eliminates the sub-wallet

backup process because the super-wallet backup is

enough, and it can regenerate the sub-wallet seeds.

To link the super-wallet seed (mSeed) to the sub-wallet

seeds (subSeed) we use the following derivation function

in [12]. This formula is similar to the existing master key

generation function in [6] with some modifications. The

xxxx is the four-digit hexadecimal index of the sub-wallet

starting from zero. The output of this function is a 512-bit

deterministic pseudo-random value, which can be used as

a regular seed to generate the entire key tree of the sub-

wallet.

subSeed = HMAC-SHA512(key="Sub-wallet xxxx",

 data=mSeed)

We use a modified version of our proposed mechanism

[8] to transport a sub-wallet seed from the super-wallet to

the sub-wallet. The modified version uses the same steps

but transports a sub-wallet seed instead of a master seed.

It uses ECDH to encrypt the seed and vcode as the side-

channel user visual confirmation. After that, the super-

wallet creates a refill transaction and publishes it on the

blockchain to send funds to the sub-wallet addresses.

III. PROPOSED MULTI-LAYER WALLET

To protect the private keys from attackers, we introduce

a defense-in-depth architecture for cryptocurrency

wallets. Our proposed architecture has three layers with

different usage and protection mechanisms, which makes

a balance between usability and security. Figure 1

demonstrates this architecture. It has three layers,

including offline layer, protected layer, and online layer.

The protected layer consists of a superior wallet. This

wallet conveys the master seed, which generates the entire

key tree and all addresses. The offline layer has at least

one backup wallet where it is a clone of the superior

wallet. We use our previously proposed method in [8] for

encrypted wallet-to-wallet cloning. The online layer can

have multiple spending wallets for regular daily

purchases. A spending wallet has a subordinate seed from

Figure 1. The proposed multi-layer defense-in-depth architecture for

cryptocurrency wallets

the superior wallet with a limited fund. We use our

previously proposed mechanism in [12] for key derivation

to generating subordinate seeds and seed transferring from

superior wallet to a spending wallet.

We have revised our previous algorithm [12] to support

our new proposed architecture. Firstly, we modify the

derivation function as follows where swSeed stands for

spending wallet seed, mSeed stands for master seed, and

xxxx indicates the spending wallet index starts from zero

in 4-digit hex number format (0000).

swSeed = HMAC-SHA512(key="swSeed xxxx",

 data=mSeed)

The superior wallet uses the derivation function only

when it creates a new seed for a spending wallet.

Secondly, we also modify the refilling address selection

policy. On the original work [12], the wallet only refills

the first address index of each derived seed. However, in

our new proposed architecture, the superior wallet uses

multiple addresses of a spending wallet seed. For each

refilling, it searches the blockchain to find the first unused

address to send the fund.

The offline layer is designed to be offline and does not

need any connection to the blockchain network. It gets

online if and only if an incident occurs for the superior

wallet and needs an emergency response. If the superior

wallet is compromised by an attack or is lost, the backup

wallet generates a brand-new master seed. It creates a

blockchain transaction to transfer all available funds of the

last master seed to an address under the new master seed.

It avoids any unintended transfer from the superior wallet

as soon as possible. We recommend a secure hardware

wallet with a secure element, a trusted display, and an

embedded button for the backup wallet.

The protected layer has only one superior wallet. This

wallet only refills the spending wallets. It calculates the

spending wallet addresses internally, so it does not send

any fund to other addresses that are vulnerable to MITM

attack for receiving address injection. Similar to the

backup wallet, we recommend a secure hardware wallet

for the superior wallet too.

Finally, the online layer can have multiple spending

wallets. These wallets can be software wallets like

smartphone wallets or hot wallets (third-party hosted

wallets). Spending wallets do not need a backup because

the superior wallet can recreate their seeds [12].

These three layers provide a balance between security

and usability. While the user stores her large fund on the

superior wallet and creates a clone of it on the backup

wallet, she enjoys the convenience of a smartphone wallet

or hot wallet to purchase online and pay her expenses.

Receiving funds does not need private keys, so there are

two possible options. If the user context does not have

privacy concerns, she can generate an address under

master seed on the superior wallet to share with others. If

the context is sensitive to privacy, the superior wallet

creates an extended public key to generates hierarchical

deterministic addresses outside of the superior wallet

without exposing the master seed or any private keys [6].

For better understanding, we explain an example setup.

Alice has 10 Bitcoin (BTC) equals to $100k (we assume

the bitcoin price is $10,000 for simplicity). She stores her

fund into the superior wallet, which is a secure hardware

wallet and keeps it safe at her home. She creates a backup

wallet, which is a secure hardware wallet too, and put it in

a safe deposit box in a bank that is physically secure. Then,

she installs a wallet app on her smartphone and makes it a

spending wallet under the superior wallet and refills 0.5

BTC ($5K) into it. To receive her salary, she gets a

receiving address from the superior wallet and shares it

with her employer. She gets paid bi-weekly with bitcoin

without requiring using the superior wallet. Alice uses the

smartphone to buy a coffee, pay the bills, and purchase

from online stores. When the spending wallet has a low

balance, she refills it using the superior wallet.

For convenience, Alice uses a type of hardware wallet

for superior wallets and backup wallets that support

Bluetooth or NFC, and she can do backup and refilling

operations using a smartphone. However, she may use an

offline laptop or another offline smartphone for better

protection to do the backup and refilling.

Now, we consider two possible security incidents and

how the defense-in-depth architecture mitigates them.

First, assume an incident in the online layer, for example,

Alice loses her smartphone or recognizes a malware

program on her smartphone. In this scenario, only the

spending wallet is at risk with a maximum of 0.5 BTC

amount. To respond to this incident, she uses superior

wallet to transfer the fund of the suspected spending wallet

to an address under the master seed. Then, she can reset

her smartphone or get a new one, and the superior wallet

generates a brand-new spending wallet seed and transfers

the seed to the smartphone.

Secondly, an incident can occur in the protected layer.

For example, Alice may lose the superior wallet because

of the physical robbery in her home. Since she uses a

secure hardware wallet for the superior wallet, it is

password protected and, if an attacker tries password

guessing more than the retry counter (i.e., five times), the

wallet will be blocked permanently. On the other hand, for

responding to this incident, Alice uses the backup wallet

to generate a brand-new master seed and create a

blockchain transaction to transfer all funds from the

previous master seed to an address under the new master

seed. She should do that as soon as possible before any

breach of the suspected superior wallet. She also must

create a new backup and regenerate the subordinate

spending wallets.

IV. PROOF-OF-CONCEPT

To evaluate our proposed architecture on bitcoin, we

implement the backup wallet and the superior wallet on a

hardware wallet device from scratch that supports

fundamental functionalities of hierarchical deterministic

wallets, according to BIP-32 [6] and BIP-44 [13]. We use

a secure element for key operations such as key generation

and digital signature.

We choose a smart card that has essential parts of a

secure hardware wallet. It has a secure element for

cryptography operations and key storage, a screen to

display sensitive information to the user, and a button to

get confirmation from the user. Figure 2 demonstrates a

picture of our test device. This device is in credit card size

and has NFC and contact interfaces to communicate.

Our test smart card has the following specification; Java

Card 3.0.5, Global Platform 2.2.1, e-paper display

256x256 pixel, 2.5 KB memory, 170 KB storage, contact

and NFC interfaces, support for SHA256, SHA512,

HMAC, AES256, ECC256, and ECDH algorithm.

Since the secure element is a resource-constraint device

with limited memory and processing ability, our code

must use the minimum amount of memory. We use the

sharing memory technique and allocate the entire memory

to only two arrays. We pass these arrays with the

maintained indexes to the functions that require arrays,

and it minimizes the heap consumption.

Furthermore, we do not use a very nested function and

any recursive call, and it minimizes stack memory usage.

We use the Java Card framework [14] to program the

secure element. It is a limited version of Java Virtual

Machine with fewer features to run on microcontrollers

and secure elements. We compile the code with the Java

Development Kit, convert it to a Card Application (CAP),

and load it into the secure element.

Figure 2. Test device with secure element, screen, and button to create

a hardware wallet

One of our implementation challenges is the public key

derivation. In ECC, a public key calculates by multiplying

the private key and the Generator point (G) [15].

Unfortunately, our secure element (and many others) does

not support EEC multiplication, and its software

implementation has no acceptable performance due to the

limited resources of the secure element. However, Java

Card API and our secure element support Elliptic-Curve

Diffie-Hellman (ECDH) key agreement. In ECDH, each

party calculates a secret by multiplying its private key and

the other party public key. An ECC public key is an

elliptic-curve point aka EC point. Therefore, the ECDH

function mathematically multiplies a scaler and an EC

point. We use the ECDH function with the private key as

the scaler and the Generator point (G) as the EC point.

Thus, the result of ECDH is the public key.

For the spending wallet, we develop a mobile app to test

our prototype with a smartphone. We use a Google Pixel

smartphone with an NFC antenna and the following

specifications: Google Pixel G-2PW4100 smartphone,

quad-core Qualcomm Snapdragon 821 processor with two

2.15 GHz cores and two 1.6 GHz cores, 4 GB memory, 32

GB storage, and Android 8.1.0.

According to our evaluation, the total execution time

for creating a backup on the test smart card takes less than

one second to complete based on our prototype [8]. The

derivation mechanism and refilling a spending wallet also

can complete around one second [12].

V. SECURITY ANALYSIS

In this section, we analyze the security aspect of our

proposed architecture and the implemented proof-of-

concept on hardware wallets and smartphones. Firstly, we

argue about the security advantages of our proposed

architecture in comparison to the existing solutions. Next,

we provide appropriate adversary models to investigate

the possible major attacks and countermeasures.

A. Security Advantages

No Paper Backup: Spending wallets do not need any

backup, and the superior wallet has one or more identical

backup on other hardware wallets. Therefore, all backups

are in digital format, and there is no physical backup on a

paper that is vulnerable to traditional attacks.

Screen
(E-Paper)

Buttons

Programmable
Secure Element

Logo for NFC Antenna

Hidden MCU

MCU

TABLE I. ADVERSARY MODEL I: MALICIOUS APP WITH DANGEROUS PERMISSION

Assumptions Goals Capabilities

• Android 8.1.0

• Internet access

• NFC access

• Knowledge of the low-level

wallet protocol (APDUs)

• Capture the master seed

or sub seed

• Inject the adversary

address to receive the

fund

• Record the screen or log the pressed buttons to capture the password

• Sniff the low-level packets to capture the master seed or spending seed

• Inject the adversary address into spending wallet refill transaction to

receive the fund (MITM)

• Replace the backup or spending wallet original transport public key

with the adversary public key to extract the master seed or spending

seed (MITM)

Less Vulnerable to Lose Large Amount: In our

architecture, we split the fund between two layers. The

protected layer stores a large amount and is used rarely,

while the online layer stores a small amount and is used

frequently. Therefore, a spending wallet is more exposed

to the network and accessible for attacks; however, it has

a small fund at risk. On the other hand, the superior wallet

is less accessible on the network, and hence, more secure

to possible attacks.

Control of spending wallets: The superior wallet can

regenerate the spending wallet seed and all corresponding

keys. Therefore, if a spending wallet is lost or stolen, the

user can use the superior wallet to recover all spending

wallet keys and transfer their funds to a brand-new address

and empties the spending wallet.

B. Adversary Models

Authors of [16] survey security analyses on several

papers and propose a comprehensive adversary model to

employ in future security researches. This model defines

three aspects of an adversary, including Assumptions,

Goals, and Capabilities. The assumptions describe the

environment, resources, and equipment of the adversary.

The goals identify the intentions of the adversary and

explain why he targets the system. The capabilities are the

abilities and actions that the adversary performs to achieve

his goals.

The authors of [16] discuss various adversary models

for diverse environments like personal computers,

networks, and cryptography parties. We use the models of

the smartphone environment to measure the security of

our final prototype on an Android smartphone.

1) Malicious App Adversary Model

The adversary model has different properties in various

fields of study, and the authors of [16] provide several

adversary models for smartphone applications. Their

proposed Malicious App Adversary Model is appropriate

for our conditions. This model includes three sub-models

based on the app permissions: Zero Permission Adversary

only has access to the list of installed apps and files stored

on external storage. Normal Permission Adversary adds

Internet access, Bluetooth, and NFC interfaces. Finally,

Dangerous Permission Adversary has access to all

resources such as camera, microphone, contact, and SMS.

In this paper, we use the Dangerous Permission Adversary

model to assume maximum power for the attacker that is

defined in TABLE I.

According to TABLE I., the adversary could capture

the user's password by recording the screen or log the

pressed buttons. Even though some solutions exist for this

attack like Trezor [17] that uses a blind visual matrix to

avoid entering a plain password on the host, we use a

physical button on the hardware wallet for confirmation.

Also, the adversary may sniff the transmitted messages

between hardware wallets and the smartphone app to

eavesdrop the master seed or spending seed. Our

mechanism is secure against this attack because the

smartphone only transmits public information, including

the superior wallet, the backup wallet and spending wallet

public keys, and encrypted master seed or encrypted seed

under an AES 256-bit key. Therefore, the attacker does

not have access to any private data.

Another capability of the adversary is making an MITM

attack to replace the receiver address by his injected

address in the transaction. The classic super-wallet/sub-

wallet model [5] is vulnerable to this attack because the

super-wallet needs to get the sub-wallet address from the

host like a smartphone. However, in our architecture, we

use the deterministic sub-wallet that prevents this attack

since the spending wallet seeds are derived from the

superior wallet master seed, and the superior wallet

generates the receiving addresses internally. Therefore,

there is no need to get the receiving addresses from the

external source, and the hacker has no chance to replace

them.

Last but not least, the adversary may make an MITM

attack to intercept the messages between the superior

wallet and the backup wallet or the superior wallet and the

spending wallet. Then, he replaces the backup wallet

public key or the spending wallet public key by the

adversary public key in ECDH key agreement, and he can

recover the transferred seed.

To defend against this attack, we have used a side-

channel verification code (vcode) in our mechanism. Both

wallets compute their vcodes of the public key and display

the vcode on their screens (see the hardware wallet shown

in Figure 2). The user visually inspects and confirms the

equality of these two vcodes by pressing a physical button

on the superior wallet. Existing hardware wallets use a

similar method to confirm transaction information like

receiver address, amount, and fee before signing them.

Therefore, during the wallet transfer operation, if a hacker

injects his public key to the superior wallet, the user will

be able to detect such an attack due to the mismatch of the

two vcodes shown on two wallets' screen and reject this

MITM attack.

2) Physical Access Adversary Model

Another possible adversary model for our proposed

architecture is an adversary with physical access to the

superior wallet (or backup wallet). In this case, the

adversary can do anything directly with the hardware

wallet without the need to install a malicious app on the

remote user's smartphone. TABLE II. demonstrates the

Physical Access Adversary Model.

TABLE II. ADVERSARY MODEL II: PHYSICAL ACCESS

Assumptions Goals Capabilities

• Access to the

hardware wallet

device

• Knowledge of

the low-level

wallet protocol
(APDUs)

• Sign a

transaction and

send the fund to

the adversary
address

• Make a brute-

force attack to

guess the

password and

sign a transaction
to transfer the

fund

In this adversary model, the adversary can make a

brute-force attack to obtain the hardware wallet password

(PIN code) and sign his desired transaction. Our proposed

architecture recommends a hardware wallet with a secure

password for the superior wallet that has a fixed password

retry counter, usually between 3 and 15. After that, the

secure element locks permanently. It is a standard

mechanism for secure elements. Therefore, if a hacker

finds the superior wallet, he can only try a limited number

of guessed passwords and could not make a brute-force

attack. For instance, if the PIN code length is four digits

and the retry counter is 10, the chance to find the PIN code

is 0.001 (tries / possible PINs = 10/104 = 0.001). On the

other hand, the user has time to use her backup wallet to

transfer all funds to a brand-new seed as soon as possible.

We must mention that the attacks to the security

element or other hardware parts and their countermeasures

are out of the scope of this paper and apply to entire

hardware wallets not specific for our proposed schemes.

VI. CONCLUSION

In this paper, we considered protecting private keys in
cryptocurrency wallets for blockchain technology. Even
though the most secure choice is hardware wallets, we
argued that there are critical issues that should be
addressed. We introduced a multi-layer architecture for
cryptocurrency wallets to provide a Defense-in-Depth
approach. For our proposed architecture, we

implemented a proof-of-concept on a hardware wallet
and Android smartphone. We also offered performance
evaluation and security analysis for our proposed
architecture.

ACKNOWLEDGMENT

This work was supported by the National Science
Foundation under grant DGE-1915780 and DGE-
1723587.

References

[1] AT&T, "AT&T is the First Mobile Carrier to Accept Payment
in Cryptocurrency," 23 May 2019. [Online]. Available:

https://about.att.com/story/2019/att_bitpay.html.

[2] Jeff Klee, "A Letter to Our Bitcoin Customers," 20 April 2018.

[Online]. Available: https://www.cheapair.com/blog/a-letter-to-

our-bitcoin-customers/.

[3] Microsoft, "How to use Bitcoin to add money to your Microsoft

account," 5 Oct 2018. [Online]. Available:

https://support.microsoft.com/en-us/help/13942/microsoft-

account-how-to-use-bitcoin-to-add-money-to-your-account.

[4] P. Vigna, "Pay Taxes With Bitcoin? Ohio Says Sure," 26 Nov
2018. [Online]. Available:

https://www.wsj.com/amp/articles/pay-taxes-with-bitcoin-ohio-

says-sure-1543161720.

[5] S. Barber, X. Boyen, E. Shi and E. Uzun, "Bitter to Better —

How to Make Bitcoin a Better Currency," in Financial
Cryptography and Data Security, Berlin, 2012.

[6] P. Wuille, "Hierarchical Deterministic Wallets," 2012. [Online].

Available: https://en.bitcoin.it/wiki/BIP_0032.

[7] M. Palatinus, P. Rusnak, A. Voisine and S. Bowe, "Mnemonic

code for generating deterministic keys," 2013. [Online].
Available: https://en.bitcoin.it/wiki/BIP_0039.

[8] H. Rezaeighaleh and C. C. Zou, "New Secure Approach to

Backup Cryptocurrency Wallets," in 2019 Global

Communications Conference (GLOBECOM), Waikoloa, HI,

USA, 2019.

[9] Certicom Research, "SEC 1: Elliptic Curve Cryptography,"

2009.

[10] "Ledger Nano X," [Online]. Available:

https://shop.ledger.com/pages/ledger-nano-x.

[11] "Trezor One," Trezor, [Online]. Available:
https://shop.trezor.io/product/trezor-one-white.

[12] H. Rezaeighaleh and C. C. Zou, "Deterministic Sub-Wallet for

Cryptocurrencies," in 2019 IEEE International Conference on

Blockchain (Blockchain), Atlanta, GA, USA, 2019.

[13] M. Palatinus and P. Rusnak, "Multi-Account Hierarchy for
Deterministic Wallets," 2014. [Online]. Available:

https://en.bitcoin.it/wiki/BIP_0044.

[14] Oracle, "Java Card 3 Platform Runtime Environment

Specification, Classic Edition Version 3.0.5," 2015.

[15] Certicom Research, "SEC 2: Recommended Elliptic Curve
Domain Parameters," 2000.

[16] D. Quang, B. Martini and C. K.-K. Raymond, "The role of the

adversary model in applied security research," Computers &

Security, vol. 81, pp. 156-181, March 2019.

[17] Trezor, "User manual: Entering PIN," [Online]. Available:
https://wiki.trezor.io/User_manual:Entering_PIN.

	I. Introduction
	II. Related Works
	A. Wallet Backup
	B. Super-Wallet and Sub-Wallet

	III. Proposed Multi-Layer Wallet
	IV. Proof-of-Concept
	V. Security Analysis
	A. Security Advantages
	B. Adversary Models
	1) Malicious App Adversary Model
	2) Physical Access Adversary Model

	VI. Conclusion
	Acknowledgment

